Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(6): e0268391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657956

RESUMO

Synthetic lethality in DNA repair pathways is an important strategy for the selective treatment of cancer cells without harming healthy cells and developing cancer-specific drugs. The synthetic lethal interaction between the mismatch repair (MMR) protein, MutL homolog 1 (MLH1), and the mitochondrial base excision repair protein, DNA polymerase γ (Pol γ) was used in this study for the selective treatment of MLH1 deficient cancers. Germline mutations in the MLH1 gene and aberrant MLH1 promoter methylation result in an increased risk of developing many cancers, including nonpolyposis colorectal and endometrial cancers. Because the inhibition of Pol γ in MLH1 deficient cancer cells provides the synthetic lethal selectivity, we conducted a comprehensive small molecule screening from various databases and chemical drug library molecules for novel Pol γ inhibitors that selectively kill MLH1 deficient cancer cells. We characterized these Pol γ inhibitor molecules in vitro and in vivo, and identified 3,3'-[(1,1'-Biphenyl)-4',4'-diyl)bis(azo)]bis[4-amino-1-naphthalenesulfonic acid] (congo red; CR; Zinc 03830554) as a high-affinity binder to the Pol γ protein and potent inhibitor of the Pol γ strand displacement and one-nucleotide incorporation DNA synthesis activities in vitro and in vivo. CR reduced the cell proliferation of MLH1 deficient HCT116 human colon cancer cells and suppressed HCT116 xenograft tumor growth whereas it did not affect the MLH1 proficient cell proliferation and xenograft tumor growth. CR caused mitochondrial dysfunction and cell death by inhibiting Pol γ activity and oxidative mtDNA damage repair, increasing the production of reactive oxygen species and oxidative mtDNA damage in MLH1 deficient cells. This study suggests that the Pol γ inhibitor, CR may be further evaluated for the MLH1 deficient cancers' therapy.


Assuntos
Antineoplásicos , Neoplasias do Colo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Metilação de DNA , Reparo de Erro de Pareamento de DNA , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , DNA Mitocondrial/metabolismo , Feminino , Humanos , Mitocôndrias/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
2.
Sci Rep ; 10(1): 16371, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004944

RESUMO

The molecular mechanisms underlying the development and progression of bladder cancer (BC) are complex and have not been fully elucidated. Alterations in base excision repair (BER) capacity, one of several DNA repair mechanisms assigned to preserving genome integrity, have been reported to influence cancer susceptibility, recurrence, and progression, as well as responses to chemotherapy and radiotherapy. We report herein that non-muscle invasive BC (NMIBC) tissues exhibit increased uracil incision, abasic endonuclease and gap-filling activities, as well as total BER capacity in comparison to normal bladder tissue from the same patient (p < 0.05). No significant difference was detected in 8-oxoG incision activity between cancer and normal tissues. NMIBC tissues have elevated protein levels of uracil DNA glycosylase, 8-oxoguanine DNA glycosylase, AP endonuclease 1 and DNA polymerase ß protein. Moreover, the fold increase in total BER and the individual BER enzyme activities were greater in high-grade tissues than in low-grade NMIBC tissues. These findings suggest that enhanced BER activity may play a role in the etiology of NMIBC and that BER proteins could serve as biomarkers in disease prognosis, progression or response to genotoxic therapeutics, such as Bacillus Calmette-Guérin.


Assuntos
Carcinoma de Células de Transição/genética , Reparo do DNA , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células de Transição/patologia , DNA Glicosilases/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Bexiga Urinária/patologia
3.
PLoS One ; 14(8): e0221362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415677

RESUMO

Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer's disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase ß (POLß) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLß rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLß variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or-translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.


Assuntos
Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Encéfalo , DNA Glicosilases/genética , DNA Polimerase beta/genética , Reparo do DNA , Polimorfismo Genético , Uracila-DNA Glicosidase/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Feminino , Humanos , Masculino , Fatores de Risco , Uracila-DNA Glicosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...